Multiplying Integers

Rules for multiplying integers:

- The product of two integers with the same sign is positive.
- The product of two integers with different signs is negative.

Here are some examples:

Find 5×6 .

$$5 \times 6 = 30$$

Both integers have the same sign, so the product is positive.

Find $3 \times (-2)$.

$$3 \times (-2) = (-2) + (-2) + (-2) = -6$$

So,
$$3 \times (-2) = -6$$
.

The integers have different signs, so the product is negative.

5.
$$-4 \times (-9) =$$

7.
$$(-1)(-37) =$$

9.
$$(2)(4)(-3) =$$

2.
$$5 \times (-6) =$$

4.
$$12 \times (-5) =$$

10.
$$(-8)(-7) =$$

For 11–14, evaluate each expression when d = 2.

15. Number Sense Is the product of 4 negative integers positive or negative?

Dividing Integers

Rules for dividing integers:

- The quotient of two integers with the same sign is positive.
- The quotient of two integers with different signs is negative.

$$54 \div -6$$

 $54 \div 6 = 9$. Because the signs of the two integers are different, the sign of the quotient is negative.

So,
$$54 \div -6 = -9$$
.

$$-36 \div -3$$

 $36 \div 3 = 12$. Because the signs of the two integers are the same, the sign of the quotient is positive.

So,
$$-36 \div -3 = 12$$
.

1.
$$\frac{30}{6}$$

3.
$$\frac{28}{-4}$$

2.
$$\frac{-15}{3}$$

4.
$$\frac{-50}{-5}$$

Use order of operations to evaluate each expression.

5.
$$(-48 \div 6) + (-8) =$$

6.
$$4^2 + 50 - 33 \div -11 =$$

7.
$$40 - (-18 \div -6) =$$

8.
$$(-64 \div -8) + 6^2 \div -9 =$$

For 9–12, evaluate each expression when n = -4.

9.
$$-40 \div n =$$

10.
$$\frac{n}{-2} + 21 = \underline{\hspace{1cm}}$$

11.
$$n^2 - (-3) =$$

12.
$$\frac{32}{n} - 4 =$$

13. Reasoning Without computing the answer, how do you know if the quotient $-232 \div 11$ is negative or positive?