\qquad

Equations from Line Graphs

There are a few ways to determine the equation of a line when given the graph. With the knowledge we currently have, the easiest way would be to determine a few known points on the line, make a t-chart of those points, and then determine the equation from the t-chart.

Example:

The graph to the right has 4 points labeled: $(-3,0),(-2,1),(-1,2)$, and $(0,3)$. Step 1 is to take a few known points and make a t-chart out of it.

x	y
-3	0
-2	1
-1	2
0	3

Once we've made the t-chart, it's time to analyze the points and figure out the pattern. An equation has to be set up as y=something, so ask yourself, what do you have to do to the x-coordinates to make it the y-coordinate? Can you add? Subtract? Multiply? Divide? Look at the first coordinate. What can you do to -3 to make it 0 ? You could multiply by 0 . Does that work for the other coordinates though? No. You can add 3. $-3+3=0$. Does that work for the others? Yes. $-2+3=1,-1+3=2$, and $0+3=3$. Take that rule of add 3 and turn it into the equation. The equation for this graph would be:
$y=x+3$
Look at each graph below. Fill in the t-chart with three different points from the graph. Use those points to determine the rule then write the equation for the line.
1.

x	y

2.

x	y

Equation
3.

4.

5.

6.

7.

x	y

Equation \qquad

x	y

Equation

x	y

Equation

x	y

Equation

x	y

Equation

